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SOME ASPECTS OF NON-EQUILIBRIUM FLOWS

SUMMARY

In this paper some of the general features of non-equilibrium flow
are discussed. In particular, vibrational relaxation is discussed in
detail. This case is somewhat simpler than dissociation and ionization
but it illustrates some of the main new features of non-equilibrium
flow. Those aspects of two-dimensional and axisymmetric flow behind
shock waves are examined analytically which yield significant information

without requiring numerical solution of the governing equations.

The thermodynamics of a vibrational relaxing gas is discussed. The
conditions for simulating flows are noted. Crocco's theorem and the
characteristic equations are derived. Then a simple method of obtaining
the initial gradients of the flow variables behind a shock is shown.
These gradients are used in discussing two particular flows. An exact
solution for flow over a cusped body is obtained. Flow over a wedge
near the tip and far from the tip is considered. It is found that far
from the tip a boundary layer type phenomenon occurs.



NOTATION

Cp pressure coefficient
c_, C specific heats at constant pressure, volume respectively
P ; 2 . 2.
= 1l - Ma + cot™ A
DI operator for differentiation along characteristics
E, internal energy
e = LEi (Ty) - By (ch)_], / BT,
Fl,2,3,k coefficients in gradient functions
£, EEi (T,) - E, (Tmﬂ [ ey Ty @)
£, = T, 3s/op
h enthalpy
Kw curvature of shock wave
K curvature of streamline
£ displacement of shock, Figure T(c)
M Mach number
n coordinate along normal to streamline
P pressure
q velocity
R gas constant (per molecular welght of gas)
r radial polar coordinate
S entropy
8 coordinate along streamline
T temperature
t time
X coordinate in free stream direction
Yy coordinate normal to free stream direction
a = -9
B shock wave angle
7 ratic of specific heats
€ = 0 or 1 for two-dimensional or axisymmetric flow respeqtively



vorticity
coordinate along shock wave

direction of velocity vector

© © 3 vus

charscteristic vibrational temperature
= B - ©, behind shock wave

= sin—1 (l/Ma)

<

coordinate normal to shock wave

relaxation distance (equation 5.12)

>}

density
- distance along shock
relaxation time
angular polar coordinate
= B -0

E €« © a4 a D v wm T

vorticity

Subscripts:

active degrees of freedom (translation and rotation)
internal degree of freedom (vibration)

equilibrium conditions

H O e

stagnation conditions

free stream conditions

g «



1. TINTRODUCTION

There have been many recent publications considering the flow of
a gas not in thermodynamic equilibrium. No complete bibliography will
be given here, but several papers pertinent to the present work will be

mentioned.

Probably the first work on this subject, for the case where there
are shock waves in the flow, is that of Bethe and Tellerl. A qualitative
discussion of flow over a wedge was given by Ivey and Cline2 in which the
departure from thermodynamic equilibrium was due to vibrational relaxation
of a diatomic gas. (Some quantitative results will be given here for
this case.) An approximation to the hypersonic flow over a sphere, where
the departure from equilibrium is due to dissociation, was considered by

5

Freeman”. Flows with small disturbances were considered by Moore and

Gibsonu, and in particular, the flow over a thin wedge.

In a pure diatomic gas at reasonable temperatures, three processes
can cause departure from equilibrium: vibrational excitation, dissociation,
and ionization. If the relaxation times for these processes are suf-
ficiently different, they may be treated separately. The magnitude of the
te different.
The gross effects are directly related to the energy necessary to excite

the new degrees of freedom.

In this paper vibrational relaxation only is considered. This is
somewhat simpler to handle than dissociation and ionization, but should
illustrate some of the main features of non~equilibrium flow. Because the
smallest non-equilibrium effects result from vibrational excitation, some
of the results obtained here differ little from the results of calculations
based on equilibrium flow; or differences are significant only in a
negligibly small region of flow. It is hoped that the methods used here

can be applied, with almost equal ease, to other non-equilibrium processes.



Only certain aspects of two-dimensional and axisymmetric flows

are examined in this paper; these will not involve numerical solution of
the differential equations. After a discussion of the appropriate thermo-
dynamics of & vibrational relaxing diatomic gas, the governing equations
are transformed to yield the generalization of Crocco's theorem which
relates the entropy change to the vorticity. Next a derivation and dis-
cussion of the characteristic equations are given. Using the appropriate
shock transition relations and the equations of motion, the streamwise
gradients of the flow variables are obtained employing natural coordinates
(as indicated by Sternberg5 for equilibrium flows.) These prove to be
quite useful in discussing two particular flows; namely, two dimensional
flow over (i) a cusped body which supports a straight shock wave, and

(ii) a wedge.

For (i) an exact solution is obtained that requires only two
quadratures. For (ii) the flow is examined near the tip and far from the
tip. At the tip the shock curvature and the wedge pressure gradient
can be obtained rather simply using the gradient functions. Far from
the tip the flow must be divided into two regions. To a first approxi-
mation a large region of the flow is the equilibrium wedge flow, but
there is a small region near the shock wave where relaxation is im-
portant. Mathematically this small region exhibits a boundary layer type
phenomenon. An indication is given of a means of obtaining the next

approximation.

[e¢]
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assumptions) was given by Wood and Kirkwood . The same model will be used

here.

For the case of a gas subject to vibrational relaxation the degrees
of freedom are divided into two classes: the active (translation and

otation

=

i

), for which the subscript a will be used
inert {vibration), for which the subscript i will be used. It is assumed
that local thermodynamic equilibrium exists within the classes but not

between them. The rate at which equilibrium is approached is governed
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of each class. There are other assumptions, to be mentioned later, which

are convenient to make. The model presentedp is intermediate between a

From the assumption that the Gibbs relation holds for the "a" class,

it follows that the entropy change of the "a" class is
S =c_ ar_ /T - R dp/p,
p, @&'a

where the perfect gas law is assumed

P=pRT, (2.1)
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The total entropy change is then

AQ _ AQ 1. AQ
w = wo TU.Di

Juu (2.2)
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ag, /dt = fe
i L

where T is the relaxation time and E (Ta) is the value of E, if

equilibrium existed at the temperature Ta. Tor a flow the derivative

in (2.3) is the substantial derivative.

The linear form of the rate equation presupposes that the departure
from equilibrium is not too great. It is exact if the vibrators are
quantized harmonic oscillators.l The functional relation Ei(Ta)’ for

various gases, can be obtained from tables of the properties of gases.

E, (Ta) = R ov/ [-exp. (OV/Ta) - ‘l 3 (2.4)

L __
vhere O_ 1s the characteristic vibrational temperature. This form will
be usedehen some specific flows are calculated. It is convenient,
though not necessary, to carry along both variables Ei and T,. The
functional dependence Ei(Ti}, for the case of harmonic oscillators; has
the same form as Ei(Ta) in (2.4).

== 1

For future reference the following well known relations are

recorded. For equilibrium flow T = T1 and

¢c -c¢c =R
D v
where
c =c¢ + ¢
gy P, i
a
c =c + ¢
v Va i
c, =d Ei/dl‘a.
Also
c_n - Cv = Ro
Ta ‘a

=
(@]



5. EQUATIONS OF MOTION

In this section the equat
gas subject to vibrational relaxation will be discussed. The equation
of state (2.1) is assumed. By a minor modification the results can

be extended to the case of a mixture of diatomlc gases where only one
constituent relaxes. It is necessary to know the effect of the other
constituents on this one. This case would arise, in practice, if the
relaxation time of one constituent is much shorter than that of the

others. This would be the case for air since the relaxation time of
oxygen is about one-fifteenth that of nitrogen. This extension, how-

ever, will not be included here.

The equations will be written in natural coordinates (s, n),

vhere s and n are dlstances slong the streamlines and their orthogonal
trajectories, respectively. The form of the equations of conservation
of momentum,. mass, and energy do not change because of relaxation; they
are
p q 3q/ds = - dp/ds (3.1)
p a© 36/3s = - dp/dn (3.2)
1 0p , 1 aq 00 € sin © . e
fond : - = 4 e = .
5% TintE Ty 0 (3.3)
- T
h + (q7/2) = ht (3.4)

where q 1is velocity, © is the velocity direction, € = O or 1 for two-
h

dimensional or axisymmetric flow, respectively; y is the coordinate
/

a1 +
1%

mamnmmandd " b 1n s i de e o
perpiiilural [0

A merd ~ Af 1+ - m i T
N€ 8Xis Ol symmeury; n=¢ T + &
Va 8 i

a
ig the stagnation enthalpy (constant along streamlines).
lons, together with the equation of state (2.1) and the

¢}

enthalpy; and h

These four equa

rate equation, give a complete description of the flow. In natural
coordinates the rate equation (2.3) is
nAw/Aa=rmIm\=1?—l { rz =\
A T I“i\*a By | rs (2eD)

11



The relaxation time, T, is a function of pressure and temperature.
In the following it is assumed to be constant. This would be a poor
assumption 1f there are large changes in pressure and temperature; however,
in the reglons of flow considered changes of appreciable magnitude in

these quantities do not occur.

For the above six equations, the conditions for similar flows over
geometrically similar bodies are easily deduced. 1In addition to the
requirements of fixed Mach number and ratio of specific heats, T U/E must
also be fixed for similar flows. Here U and £ are representative velocity
and length, respectively. This type of dimensionless ratio was used by
3. Experimentally the appearance of the new length scale U makes
simulation more difficult. Analytically it means that the simple "similar-

Freeman

ity solutions" (wedge flow and Prandtl-Meyer expansion) no longer exist.

A useful relation for equilibrium flows 1s Crocco's theorem.9 It
relates the entropy gradient to the vorticity. For a relaxing gas this

relation ¢

be derived as follows. The expression for the entropy

an
change (2.2) can also be written
T =dh - apfp - |1-(2/T,)] 4E
a A ‘af 1_| i
Using (3.4) to eliminate h,

T, 45 = dh, - q dq - ap/p - [1 - (Ta/Ti)] d E;

&

From this the directional derivatives of S in the s and n directions
are evaluated. After elimination of the pressure by use of the momentun

equations (3.1) and (3.2), these derivatives are expressible as

~ o _ .
Ty 3s/3s = - Ll - (Ta/TiZI OE, /38 (3.6)
T, ds/dn = qf - E - (Ta’/Tii‘l aEi/an + dht/dn (3.7)

where { 1s the vorticity,

¢ = q 30/ds - dg/om

12



Note that oh /as = 0, but oh /an = O only for isoenergetic flows. If
the flow is in equilibrium, T = T, i (3 6) gives the result of constant

theorem. For three-dimensional unsteady flow the vector form of Crocco's

theorem is
T 1 r / T
/3t -4 x & = T.VS - Vh + |l - (Ta/Ti)“ VE,

o <~
where w is the vorticity vector (1{7 gradient operator. An -
t the

the
equivalent result, but in differen ermodynamic variables, was given

It is convenient to eliminate p and p from the equations of motion

and introduce S. The resulting equations for isoenergetic flow are

OE
v 2 .1y 92 30 € g sin @ q 1
M, -l5-e57 = y + (cp\1 Ta) Js (3.8)
a
2 o s , r‘ 1
qQ 00/ds - q og/om = T_ 3S/dn + |1 - (Ta/Tq)I OE,/dn (3.9)
T_38/3s + ﬁ - (z /2, ] 3, /3s = O (3.10)
N I __ s— N _1 ?
q OE,/ds = L (T,) - E;l /T (3.11)
o,
cpa T, +E; +(a7/2) = hy (3.22)
where
M 2 = q_‘\ (o] /(C RT )o

Thus only the "frozen" Mach number enters. Note that (3.9) and (3.10) are
simply (3.6) and (3.7) while (3.8) comes from (2.1), (3.1), (3.3), and

the expression for dS/ds. The unknowns are

"

Q Q. m w a a
=4 4y Qlll Ve
M2 J a i)

)

It is easily verified by the standard technique that the above partial

differential equations are hyperbolic if M > 1, Solving the determinant
equation for the four characteristic directions, one obtains the streamline

13



direction counted twice and the Mach lines based on Ma; that is, the

form are (3.10), (3.11), and the following two equations:
€ q sin 0 sin p S0 [E(T) - EJ]
T

cot p D+ qQ+a D+ e = - + T o

. . Fa ©

(3.13)
-cotpTDs+r1-(T/T)]DE /a
a + i
k —_
where the operators D+ are defined by

sec pD_ = J3/ds + tan p 3/dn;

2 ~ 2

that is, D+ indicates differentiation along the Mach lines inclined at
p to the streamline. The appearance of the "frozen" Mach lines has
A numerical calculation, using the
characteristic form, for flow over a wedge is in progress and will be

reported in another paper. .

14



L. GRADIENTS BEHIND A SHOCK WAVE

A general method for computing the flow variable gradients behind
a shock wave in a two-dimensional flow was developed by Thomasll for a
gas not subject to relaxation effects. A simpler method, using natural
coordinates, was Indicated by Sternberg.5 For two-dimensional flow the
gradients are particularly useful; e.g., the slope of the streamlines at
he hodograph plane can i
so-called "hedge-hog" introduced by Busemann). It is found that the

gradients are proportional to the shock wave curvature.

For sxisymmetric flow the same gradients can be computed, but they
are linear combinations of the two curvatures: Kw in the meridianal and
l/y in the azimuthal planes. This fact limits the usefulness of the
gradients for this case. Extensive tabulations have been made recently12
of the coefficients of Kﬁ‘and 1/y; with these the gradients can be computed
easily. (The two-dimensional result is obtained by setting the coefficient
of 1/y equal to zero.)

For a uniform flow which is in equilibrium in front of a shock
wave but not behind it, the gradients will depend on the relaxation time,
Behind the shock the flow variables are computed from the shock relations
change across a shock.l To obtain expressions for the gradients, the
equations of motion are combined with the shock relations; the normal
derivatives are expressed in terms of derivatives along the shock wave
and along the streamiine. Referring to Figure 1,

d/d0 = cos A ®/ds + sin A d/dn

vwhere o is distance along the shock wave, B is the shock angle, and

A =B - 6. BSinece

d/ds = Jp/ds (d/3B) = K, d/op

the normal derivative can be written

d/dn = [;i_ d/3B - cos A a/a;] / sin A (4.1)
v -

15



The normal derivatives in (3.8) and (3.9) are eliminated by use of (4,1);

BE1/3B = 0, and dq/dB, 39/dB, etc. can be computed from the shock
relations. The following two equations then result:

2 . . - ~n /N
(M. - 1) 3a/qds + cot A 36/3s

(e¢/y) sin @ + £, 0+ (Kw k2/sin A)

(k.2)
cot A dq/ds + q 08/3s = X, (f, + g kl)/(q sin \) (4.3)
where

k) = da/9B, k, = 36/3p

£, = (38,/38)/c_ 1, = [, (x)) - & (T )| /(c T, <a)

1 1 P a i a i a)_J P a

a a
£ =m Js8/d8
2 *a /i >F

and all quantities are evaluated immediately behind the shock wave.
Solving (4.2) and (4.3) for d6/ds and dq/ds, one obtains

36/3s = FiK_ + (&/y) F, + (£ cot A)/D (b.4)
-/ N I L telvY B - g ¢ /& \ 1 5)
(1/qCD) dq/dS = rB W + \€/Y) r)_'_ q Il/\‘-lm D/ (l"'Jl
vhere
-—— r d 2 LT &£ I‘-l ~ namn
.[tl = DL - lvla )(Al T .L2 q ) = g kz cot )\‘__\l // (q D ein :v)
F, = (sin 6 cot A)/D
[ -l) T .. \
F, = k. +°f cot A - k D sin A
5 {E L i, a S AS™ )
F, = - (asin @) /(q D)
D = 1~ Ma2 + cot2 A

[}

' 12

The Fi are functions of Moo’ B, and 7, and have been tabulated for
. i oo =1 o . A A

y =10, 1,15 Moo/: 10, and sin \.L/MOO) LB <n/e.

16



By use of (3.1), (3.3), and (3.4) the gradients of p, p, and T,
can be obtained, Since fl and D are positive, the effect of relaxation

is to increase the streamline curvature 06/0s and decrease the velocity

gradient for given Kw and y. For reasonably strong shocks at ordinary

T , E, (T__) can be neglected compared to E, (T ).
00 X Q0O L a

Even for two dimensional flows 1t is seen that the

gradients will

not be simply proportional to K ; this will 1limit their usefulness. Some
gk L W
annldaat+di~rn will ha madae Af theas oradiante 4n +tha navt 1A rhantara
ny-l—.&\f()‘ Vi\/ii1 L e AL Vi viiwwoo 6‘- ALl il VD ded b VidNe ddNe LA A vllur Vel Je
Fpovveis Of U.S. ABMT
QTInAY LTI .
PiL, 47, 1D. 21005
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5. AN EXACT SOLUTION

As mentioned previously, the solution for flow over a wedge is
no longer simple when the gas behind the shock is relaxing; the flow
behind the shock is not uniform and the shock is not straight. This
floy will be considered in the next section. Here it will be shown that
an exact solution can be obtained for two~dimensional flow over a cusped
body (the curvature becoming zero asymptotically) which supports a
straight shock wave. .

From (4.4), with € = 0, it can be seen that if the shock is locally
straight, Kw = 0, the curvature of the streamline at the shock can be
easily calculated. Letting Ks = BO/BS, a convenient non-dimensional
measure of streamline curvature is the following quantity:

K, 7 qoo/ei = (R q, cot x)/cpaq D (5.1)

where

e, = EEi () - E, (Tmﬂ /RT, (5.2)

A plot of the expression in (5.1) is shown in Figure 2 for a range of
values of M_ and B. For the case of pure N, with T = 300°K, B = 60°,
M = 6, where (2.4) was used with 6, = 3336°K, it is found that 6 = 4l1.1

and K, = 5.5 ftél.The value of T was taken from Reference 8.

Since (5.1) has no physical length scale in it, the shock wave could
be straight over any finite distance and K_ would be the same everywhere.
Considering the manner in which a numerical solution of th
equations would proceed, starting from a straight shock, one can see that
all the flow variables depend only on the distance along the normal to
the shock. A "shock oriented” coordinate system &, n is introduced, as
shown in Figure 3, and a solution with flow variables independent of 7 is
sought. The streamlines will be parallel curves with initial curvature
glven by KS in (5.1) and initial slope calculated from the frozen shock
relations. If the streamlines are physically meaningful, any one of them

can be chosen as the body. Reflecting this curve through the free stream

18



direction gives a pointed cusped body which supports a straight shock
wave. Anticipating a result from the next chapter, the curvature of
the body should approach zero and the angle of the body should approach
the equilibrium wedge angle appropriate to the given shock angle. These
expectations are verified by the solution obtained below.

Equations (3.8) to (3.12) are transformed to the (&, n) system by

N/ N\ w it [0 AY N/ t o /' n AY N /N\on
g/08 = 51N (p ~ ¥) O/0f + COS (p -~ ¥) 0O/07]

v

d/dn = - cos (B - ©) 9/dt + sin (B - ©) 3/
Setting all 7 derivatives equal to zero and letting
v=p-86,
one obtains the following equations
2 oq 09 q sin ¥ aEi
(Ma -l)sin\lrgg- +qcos1lr3§= T SE (5.3)
&
q sin ¥ 6/t + cos ¥ 9g/dt = O (5.4)
r, 3s/ot + [1- (z /)| @, /0t - o (5.5)
asin v /- [ (1) -5, /o (5.6)
°p o * By * (a®/2) = n, (5.7)
On elimination of &, (5.4) can be written
da/q = - tan ¥ a9
Integrating,
q cos ¥ = q, cos (B - 6;), (5.8)

where the subscript f denotes values computed from the frozen shock

relations.

19



Combining (5.3) with the differentiated form o

L]
—~
\n
Ll |
O
o
=]
fo7]

eliminating ¢, a first order ordinary differentisl egquat

“ The result of integrating this is

<

r— I
T, = L? + (qf /R) sin® Oéﬂ cot (B - Gf) tan
(5.9)
where again the frozen shock relations have been applied. Ei is obtained
from (5.7), with the aid of (5.8
E, = h, + i?c /R)tan” ¥ - (1/2) sec” él qu cos® (B - Of)

i t
- CPa [?af + (qf /R) sin” (B - OfZl cot (B - Gf) tan V¥

o)
o
—~

(@)Y

g
Ie)
D
3

o

With all the variables expressed in terms o

used to obtain © as a function of £. Thus
Qo

b oe

J
Of

= qp T cos (B - f) (8) as

F(6) = tan V¥ (dEi/dO)/ [(Ei (T&) - E;\

The equation of the body is, in parametric form (parameter Gb),

s
E, = dp T cos (-6, | F(o)ae

'y
I

lgh l

=q_ Tcos (B -6, 6)/tan de
‘b ‘Lf 1 I-, é ( )/ ‘lll
f
The above integrations sre carried out until E,{T_ ) is egqual to E,; that
i‘7a i

is; equilibrium is attained. In principle, gb and Ty become infinite for

20



this condition; actually, the curvature of the body approeches zero
rather quickly and the gas is, for all practical purposes, in equilibrium

at finite &, and 1. .
D ‘D

A representative result (obtalned by numerical integration) of the

o 0
2atM00-8, ﬁ;65,'1‘c0 = 300°K.
Equations (2.4) was used to obtain E i(Ta), with 6 = 3336 K. The angle
of the body changes about three degrees from Of = 43.6° to Oe = h6.7°,

above formulas is shown in Figure 4 for N

the latter being the wedge angle that corresponds to & shock angle of
650 when the equilibrium shock relations are used. For the latter
relations see, e.g., Reference 13. The largest change in angle occurs
when Of and MOO are close to the conditions for shock detachment in

frozen flow.

Thus an exact calculation (with two quadratures) of the flow with
a straight shock wave 1s possible. These results can be used to check
approximate methods of computing flows. In the next chapter this exact
solution will be used to investigate a portion of the flow far from the
tip of a wedge.

It is desirable to define some measure of the distance over which
relaxation effects are important. As in defining the thickness of a
viscous boundary layer, there is some arbitrariness in any definition
of a relaxation distance. Following Moore and Gibsonh, one such
definition would be

j [1-(‘r11/Ei )] at,
o eq.

wnere Ei is the final equilibrium value of Ei' it E1 is replaced
eq eq.

by Ei(Ta)’ the value of the integral would not be changed much, but the
integration would be easier. Calling this relaxation distance §r,

21



rCD r —
§r = l l 1 - Ei/Ei(Taﬂl ag

Jo - =
o

°r

= q, T cos (B - Gf) ‘ (dEi/dQ) tan ¥ / Ei(Ta) ‘3-9;-]
L
/ef (5.12)

where © is the equilibrium wedge angle. For the particular example
e

cited above

£. = .136 Q, 7= «300 Qo T

No reason was given for the particular definition of a relaxation distance
in Reference L4; it 1s analogous to the definition of displacement thick-
ness of a viscous boundary layer. In the next chapter a different method
of obtaining a distance is given which results in a coefficient of T qm
thirty per cent higher than the one given for gr.

n
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6. FLOW OVER A WEDGE

Several years ago Ivey and Cline2 discussed the two-dimensional
flow over a wedge. This was mainly a qualitative discussion. However,
1t vas pointed out that at the tip the shock wave should have the angle
appropriate to the frozen shock relations, and far from the tip the
(smeller) angle appropriate to the equilibrium shock relationst>. Also
the shock éurve is concave downward. Here some further quantitative
results for this flow are shown.

It seems most natural to use polar coordinates (r, ¢) with the
origin at the tip and @ memsured from the free stream direction. Trans-
forming Equations (3.8) to (3.12), with €

0, to polar coordinates gives
(an - 1)(r cos @ 8q/dr + sin @ 3q/dP) + q(r sin @ 39/dr - ¢
&

= (q/cPa T, )(r cos @ OE,/dr + sin « OE, /5p)

qg(r cos @ 96/dr + sin a 36/3p) + q(r sin @ dg/dr - cos o da/dp)
=-T (rsina 3S/dr - cos o dS/P) (6.2)

] !_f— - (Ta/Tiﬂ (r sin o 38, /3r - cos o 35/38)
Ta (I‘ co8 O 38/3'* + sin ¢ C\JS//C\)¢) = o
- - (6.3)
-~ - ) n rv INAN
{_l (T&/T@J (r cos & 38,/3r + sin o 3, /36)
8 = [\ r-n m .-._l ,
a(r cos « aEi/ag + 8in o aEi/8¢) = (v/7) | B (T,) - E, | (6.%)
T + B 4+ 1-2/2\ =h 6
Tl (6.5)

flow near the tip a dimensionless variable, r/TqOO,
is introduced. Until the appropriate boundary conditions for wedge flow
are introduced, the following discussion applies to any two~dimensional

o Aoty
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flow (e.g., the modifications to Prandtl-Meyer flow over a corner).
Assume that all the flow variables can be expanded in a power series
in r/rqoo; then it can be shown that, to within O(r/quo) terms, the

flow is frozen. The form of these serles would be

P(r;0) = £ (@) + (r/ta_ ) £.(B) + . . . o
o) 1l

\ r

2
(Mao - 1) sin a aqo/a¢ - q, cos aoo/a¢ =0 (6.6)
cos a_ aqo/3¢ - g, sin a BGO/B¢ =0 (6.7)
aso/a¢ =0 (6.8)
O, J3g =0 (6.9)
o
Equations (6.6) and (6.7) present two possibilities; either
M 2 sin2 a =1,
a o
(0]
which is appropriate for corner flow, or
dq /P = de /o3p = o,
(o] o )
vwhich, after applying the wedge boundary conditions, gives frozen flow

23
over a wedge. To within an error O(r/quo), the shock wave is straight.

The next step would be the soiution of the differen
for ql, Gl, etec. Although this is feasible, it will not be done because
Y

the most interesting information can be more easily obtained from the

gradient functions of Chapter 4. Since, for the wedge, 39/ds = 0, the

curvature of the shock at the tip 1s, from (4.4),

K, = - (£, cot x)/DFl

The frozen values of the variables are used in the right hand side. In

non~-dimensional form

Ry
y<



Kw'rqoo/ei = - (Rq_, cot x)/cpaq DF, (6.10) -
A plot of the expression in (6.10) is shown in Figure 5 for a range of

(o} (o} _
with T_ = 300K, B = 60, M = 6,

Moo and B. For the case of pure N2

P =1 atmo,

a0
0=141.1° K =k1 £t

where (2.4) was used with 6, = 3336° K; the value of T was taken from

Reference 8, and Fl from Reference 12. For the same conditions, except

M_ =10, K_1s 220 £t~*
0o W

detectable in any ordinary scale of experiment.

> which means that the curvature would not be

With K& known, the initial velocity gradient along the wedge can
be computed from (4.5), and then the pressure gradient from (3.1l). A

convenient non-dimensional form for the pressure coefficient is

(bcp/Bs)('rqcD/ei) = 2(pq,/pooqoo) [(R/cpaD) - (FBKquoo/eiE‘ (6.11)
where

2
C, = 2(p - Py, )/Py 4y,

A plot of the expression in (6.11) is shown in Figure 6. For the above
-1
example (M_ = 6) Bcp/bs = 16,0 ft.

Thus the shock curvature and the rate of change of the flow

variables on the wedge at its tip can be obtained rather easily; if the
details of the flow are desired, the series expansion method should be
used. Unfortunately, the same method, i.e. employing the gradient functions,
cannot be used to investigate cone flow. The use of natural coordinates
at the tip of a cone 1s impossible because of the nature of the singularity

there., The serles expansion method could be used, but the differential
| equations for the filrst order terms would be much more difficult to solve
than those of the wedge case.
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To consider the flow far from the tip, a series expansion procedure
'''' he 1 able. The assumption that

the flow variables are analytic in this variable will be seen to be not
uniformly valid. The difference between this case and the previous one
can be seen by examining (6.4). When r/'rq_CJO approaches zero, the right
hand side vanishes and nothing unusual happens. When quo/r approaches
zero, the left hand side vanishes and the result is that E (Ta) =E,;
that is, the flow is in eguilibrium. Since derivatives have been lost,
a boundary layer type phenomenon (singular perturbation) must be
expected. The order of the system (6.1) to (6.4) is reduced from four
to three by this limiting process. Also the result that the flow 1s
in equilibrium is inconsistent with the boundary condition Ei =E, at

i
the shock.

QO

If the flow variables are expanded in a series of the form
o 1
£, #) = £ () + (va_/r) £ (B) + . ..

the zeroth order terms for q and © will satisfy equations of the same
form as (6.6) and (6.7) except with zero superscripts instead of sub-
seripts and Ma replaced by the equilibrium Mach number. Thus, to
within an error O(quo/r), the flow is equilibrium wedge flow. The
shock 1s straight and the flow is uniform and parallel to the wedge.

It is helpful to keep in mind here the procedure for obtaining the

viscous flow over a body: (i) the non-viscous flow 1s computed ignoring
one boundary condition (1.e., tangential velocity equals zero), (i1) the

structure of the apparent discontinuity (vortex sheet) at the body is
investigated using the boundary layer approximation, (i1ii) the non-
viscous flow over the body plus displacement thickness is computed, etc.
For the present problem steps analogous to (i) and (ii) will be teken.
Note that here part of the problem is to determire the boundary; that

1s, the shock wave,
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In Figure 7(a) & streamline and the fictitious "equilibrium shock",
predicted by the filrst term of the series expansion, are shown in dashed
lines. The transition across the shock is governed by the equilibrium
shock relations. The angle of the equilibrium shock is fixed by Moo and
the wedge angle. Extended, it must go through the tip in order to satisfy
the conservation of mass. The actual shock (solid line) must be dai placed
upstream of the equilibrium shock, but its curvature must vanish to within
an error O(Tq /r). To this approximation the non-equilibrium flow behind
a straight shock describes the flow near the shock but far from the tip
(Figure 7(b)). This flow is obtained from the exact solution of Chapter
5. Thus the "boundary layer", or rapid transition region, is determineble.
Compared to the equilibrium region between the shock and the body this
transition region is negligibly small. It and the shock merge into the
equilibrium shock.

The question remsins: how to join the two regions; or rather, how
far is the shock displaced from the equilibrium shock? This is answered
by again invoking the conservation of mass. A transition region stream-
line must asymptotically approach the equilibrium streamline that
originates at the same point of the free stream flow (see Figure 7(b)).
The displacement of the shock from the equilibrium shock is denoted by £.

From the condition defining £ it is easily shown that
£ =1 ten ae/ tan B, - ten (B, - erl (6.12)

where ﬁe 1s the equilibrium shock angle, Oe is the wedge angle, and b is
the distance (measured perpendicular to the shock) between the shock end
the asymptote to the transition streamline (see Figure T(b) or 3). There
1s no convenient expression for b, but it is easily determined graphically
when equations (5.11) are plotted. For the conditions of the example of
an exact solution given in Chapter 5, viz., Be = 650, Oe = h6.7°, M = 8,
in N,, (6.12) glves

L= .177 W = .0008 ft.
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vhereas £ = 136 4,7~ In Figure 7(c) the two regions are shown according
to this approximation; i.e., to within an error O(quo/r). The equilibrium
shock 1s shown extended to the tip. The next approximation, with an error
O(quo/r)e, would show the downstream edge of the transition region to be

curved.

This next approximation has not yet been worked out. The following
is an outline of how thls might be done. By developing gradient functions
for equilibrium flow, the curvature of the equilibrium shock wave could
be obtained., Then let the actual shock have this same curvature. For this
curved shock, a shock oriented coordinate system could be used to attempt
to get the next approximation to the transition region.
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